Phytomedicine is known for its excellent therapeutic applications owing to phytoconstituents present in plants, with no or least side effects. But its low bioavailability due large molecular size, poor lipid solubility and lack of stability of bioactive compounds make hindrance in its efficacy. Different strategies have been developed to generate the effective carrier systems to enhance bioavailability of phytochemicals. One of the latest and most popular lipid-based carriers for delivering plants based pharmaceuticals and nutraceuticals is the phytosome. Phytosome is an emerging lipid based drug delivery approach which involves encapsulation of bioactive ingredient into phospholipid molecule mainly phosphatidylcholine. Phytosomes as phyto-phospholipid complexes lead to target drug delivery, better bioavailability and stability, enhanced pharmacological efficacy as well as the protection of bioactive compounds from chemical and physical degradation. Due to easy preparation of the bilayer vesicles and their effectiveness, phytosomes have been extensively employed and approved by the scientific literature. In this review, a phytosome technology, its structural components, formulation techniques, optimization, characterization approaches as well as merits and demerits are comprehensively discussed. Moreover, phytosome based market products and recent research is presented. It is concluded that phytosome technology is a gift for herbal extracts and phytochemicals that are inadequately bioavailable and have well-established processing methodologies as well as verified analytical techniques.

Keywords: Phytomedicine, Novel drug delivery system, Phytosome, Liposome, Bioavailability, Phytochemicals, Phosphatidylcholine, Thin layer hydration technique, Biodegradable, Supercritical anti-solvent precipitation.

Abdul Rasool, B.K., N. Al Mahri, N. Alburaimi, F. Abdallah & A.S.B. Shamma (2022). A narrative review of the potential roles of lipid-based vesicles (vesiculosomes) in burn management. Scientia Pharmaceutica, 90: 39. https://doi.org/10.3390/scipharm90030039.

Agarwal, A., P. Chakraborty, D.D. Chakraborty & V.A. Saharan (2012). Phytosomes: complexation, utilisation and commerical status. Journal of Biologically Active Products from Nature, 2: 65-77. 

Agarwal, A., M. Wahajuddin, S. Chaturvedi, S.K. Singh, M. Rashid, R. Garg, D. Chauhan, N. Sultana & J.R. Gayen (2023). Formulation and characterization of phytosomes as drug delivery system of formononetin: an effective anti-osteoporotic agent. Current Drug Delivery. 

Albalawi, R.S., L.S. Binmahfouz, R.H. Hareeri, R.A. Shaik & A.M. Bagher (2023). Parthenolide phytosomes attenuated gentamicin-induced nephrotoxicity in rats via activation of Sirt-1, Nrf2, OH-1, and NQO1 Axis. Molecules, 28: 2741. https://doi.org/10.3390/molecules28062741.

Albash, R., N.M. Badawi, M.I. Hamed, M.H. Ragaie, S.S. Mohammed, R.M. Elbesh, K.M. Darwish, M.O. Lashkar, S.S. Elhady & S. Mosallam (2023). Exploring the synergistic effect of bergamot essential oil with spironolactone loaded nano-phytosomes for treatment of acne vulgaris: In vitro optimization, in silico studies, and clinical evaluation. Pharmaceuticals, 16: 128. https://doi.org/10.3390/ph16010128.

Alhakamy, N.A., U.A. Fahmy, S.M. Badr-Eldin, O.A. Ahmed, H.Z. Asfour, H.M. Aldawsari, M.M. Algandaby, B.G. Eid, A.B. Abdel-Naim & Z.A. Awan (2020). Optimized icariin phytosomes exhibit enhanced cytotoxicity and apoptosis-inducing activities in ovarian cancer cells. Pharmaceutics, 12: 346. 

Alhakamy, N.A., S.M. Badr-Eldin, U.A. Fahmy, N.K. Alruwaili, Z.A. Awan, G. Caruso, M.A. Alfaleh, A.L. Alaofi, F.O. Arif & O.A. Ahmed (2020). Thymoquinone-loaded soy-phospholipid-based phytosomes exhibit anticancer potential against human lung cancer cells. Pharmaceutics, 12: 761. https://doi.org/10.3390/pharma ceutics12080761.

Alhakamy, N.A., U.A. Fahmy, S.M.B. Eldin, O.A.Ahmed, H.M. Aldawsari, S.Z. Okbazghi, M.A. Alfaleh, W.H. Abdulaal, A.J. Alamoudi & F.M. Mady (2022). Scorpion venom-functionalized quercetin phytosomes for breast cancer management: in vitro response surface optimization and anticancer activity against MCF-7 cells. Polymers, 14: 93. https://doi.org/10.3390/polym14010093.

Alharbi, W.S., F.A. Almughem, A.M. Almehmady, S.J. Jarallah, W.K. Alsharif, N.M. Alzahrani & A.A. Alshehri (2021). Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals. Pharmaceutics, 13: 1475. https://doi.org/10.3390/pharmaceutics13091475.

Allam, A.N., I.A. Komeil & O.Y. Abdallah (2015). Curcumin phytosomal softgel formulation: Development, optimization and physicochemical characterization. Acta Pharmaceutica, 65: 285-297. https://doi.org/10.1515/ acph-2015-0029.

Angelico, R., A. Ceglie, P. Sacco, G. Colafemmina, M. Ripoli & A. Mangia (2014). Phyto-liposomes as nanoshuttles for water-insoluble silybin–phospholipid complex. International Journal of Pharmaceutics, 471: 173-181. https://doi.org/10.1016/j.ijpharm.2014.05.026.

Anjana, R., S. Kumar, H. Sharma & R. Khar (2017). Phytosome drug delivery of natural products: A promising technique for enhancing bioavailability. International Journal of Drug Delivery Technology, 7: 157-165.

Babazadeh, A., M. Zeinali & H. Hamishehkar (2018). Nano-phytosome: a developing platform for herbal anti- cancer agents in cancer therapy. Current Drug Targets, 19: 170-180. 

Barani, M., E. Sangiovanni, M. Angarano, M.A. Rajizadeh, M. Mehrabani, S. Piazza, H.V. Gangadharappa, A. Pardakhty, M. Mehrbani & M. Dell’Agli (2021). Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature. International Journal of Nanomedicine, Pages 6983-7022. https://doi.org/ 10.2147/IJN.S318416.

Bhise, J.J., O.G. Bhusnure, S.R. Jagtap, S.B. Gholve & R.R. Wale (2019). Phytosomes: a novel drug delivery for herbal extracts. Journal of Drug Delivery and Therapeutics, 9: 924-930. https://doi.org/10.22270/jddt.v9i3-s.2863.

Bresciani, L., G. Di Pede, C. Favari, L. Calani, V. Francinelli, A. Riva, G. Petrangolini, P. Allegrini, P. Mena & D. Del Rio (2021). In vitro (poly) phenol catabolism of unformulated-and phytosome-formulated cranberry (Vaccinium macrocarpon) extracts. Food Research International, 141: 110137. 

Cai, X., Y. Luan, Y. Jiang, A. Song, W. Shao, Z. Li & Z. Zhao (2012). Huperzine A-phospholipid complex-loaded biodegradable thermosensitive polymer gel for controlled drug release. International Journal of Pharmaceutics, 433: 102-111. https://doi.org/10.1016/j.ijpharm.2012.05.009.

Carignani, E., M. Geppi, M. Lovati, E. de Combarieu & S. Borsacchi (2020). Solid State NMR study of the mixing degree between Ginkgo biloba extract and a soy-lecithin-phosphatidylserine in a composite prepared by the phytosome® method. Chemistry Africa, 3: 717-725. 

Chauhan, N.S., R. Gowtham & B. Gopalkrishna (2009). Phytosomes: a potential phyto-phospholipid carriers for herbal drug delivery. J Pharm Res, 2: 1267-1270. 

Chen, X., X. Fan & F. Li (2022). Development and Evaluation of a Novel Diammonium Glycyrrhizinate Phytosome for Nasal Vaccination. Pharmaceutics, 14: 2000. https://doi.org/10.3390/pharmaceutics14102000.

Chittasupho, C., K. Chaobankrang, A. Sarawungkad, W. Samee, S. Singh, K. Hemsuwimon, S. Okonogi, K. Kheawfu, K. Kiattisin & W. Chaiyana (2023). Antioxidant, anti-inflammatory and attenuating intracellular reactive oxygen species activities of Nicotiana tabacum var. Virginia Leaf extract phytosomes and shape memory gel formulation. Gels, 9: 78. https://doi.org/10.3390/gels9020078.

Chivte, P.S., V.S. Pardhi, V.A. Joshi & A. Rani (2017). A review on therapeutic applications of phytosomes. Journal of Drug Delivery and Therapeutics, 7: 17-21. https://doi.org/10.22270/jddt.v7i5.1513.

Das, M.K. & B. Kalita (2014). Design and evaluation of phyto-phospholipid complexes (phytosomes) of rutin for transdermal application. Journal of Applied Pharmaceutical Science, 4: 051-057. 

Dewan, N., D. Dasgupta, S. Pandit & P. Ahmed (2016). Review on-Herbosomes, A new arena for drug delivery. Journal of Pharmacognosy and Phytochemistry, 5: 104. 

Dhase, A.S., & S.S. Saboo (2015). Preparation and evaluation of phytosomes containing methanolic extract of leaves of Aegle marmelos (bael). International Journal of Pharm Tech Research, 8: 231-240. 

Direito, R., C. Reis, L. Roque, M. Gonçalves, A. Sanches-Silva, M.M. Gaspar, R. Pinto, J. Rocha, B. Sepodes & M. Rosário Bronze (2019). Phytosomes with persimmon (Diospyros kaki L.) extract: Preparation and preliminary demonstration of in vivo tolerability. Pharmaceutics, 11: 296. 

Dongare, P.N., A.S. Motule, M.R. Dubey, M.P. More, P.A. Patinge, R.L. Bakal & J.V. Manwar (2021). Recent development in novel drug delivery systems for delivery of herbal drugs: An updates. GSC Advanced Research and Reviews, 8: 008-018. https://doi.org/10.30574/gscarr.2021.8.2.0158.

Freag, M.S., Y.S. Elnaggar & O.Y. Abdallah (2013). Lyophilized phytosomal nanocarriers as platforms for enhanced diosmin delivery: optimization and ex vivo permeation. International Journal of Nanomedicine, Pages 2385-2397. https://doi.org/10.2147/IJN.S45231.

Gándola, Y.B., S.E. Pérez, P.E. Irene, A.I. Sotelo, J.G. Miquet, G.R. Corradi, A.M. Carlucci & L. Gonzalez (2014). Mitogenic effects of phosphatidylcholine nanoparticles on MCF-7 breast cancer cells. BioMed Research International. https://doi.org/10.1155/2014/687037.

Gaurav, V., S. Paliwal, A. Singh, S. Pandey & M. Aqil (2021). Phytosomes: Preparation, evaluation and application. Int J Res Eng Sci, 9: 35-39.

Ghanbarzadeh, B., A. Babazadeh & H. Hamishehkar (2016). Nano-phytosome as a potential food-grade delivery system. Food bioscience, 15: 126-135. https://doi.org/10.1016/j.fbio.2016.07.006.

Habbu, P., S. Madagundi, R. Shastry, R. Vanakudri & V. Kulkarni (2015). Preparation and evaluation of antidiabetic activity of Allium cepa-phospholipid complex (phytosome) in streptozotocin induced diabetic rats. RGUHS J Pharm Sci, 5: 132-141.

Hammam, E., J. Basahi, I. Ismail, I. Hassan & T. Almeelbi (2017). The role of hydrogen bonding in the fluorescence quenching of 2, 6-bis ((E)-2-(benzoxazol-2-yl) vinyl) naphthalene (BBVN) in methanol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173: 681-686. https://doi.org/10.1016/ j.saa.2016.10.018.

Hanif, H., V. Abdollahi, F. Javani Jouni, M. Nikoukar, B. Rahimi Esboei & E. Shams (2023). Quercetin nano phytosome: as a novel anti-leishmania and anti-malarial natural product. Journal of Parasitic Diseases, Pages 1-8. 

Hou, Z., Y. Li, Y. Huang, C. Zhou, J. Lin, Y. Wang, F. Cui, S. Zhou, M. Jia & S. Ye (2013). Phytosomes loaded with mitomycin C–soybean phosphatidylcholine complex developed for drug delivery. Molecular pharmaceutics, 10: 90-101. https://doi.org/10.1021/mp300489p.

Ipar, V.S., A. Dsouza & P.V. Devarajan (2019). Enhancing curcumin oral bioavailability through nano formulations. European Journal of Drug Metabolism and Pharmacokinetics, 44: 459-480. 

Islam, N., M. Irfan, T. Hussain, M. Mushtaq, I.U. Khan, A.M. Yousaf, M.U. Ghori & Y. Shahzad (2022). Piperine phytosomes for bioavailability enhancement of domperidone. Journal of Liposome Research, 32: 172-180. https://doi.org/10.1080/08982104.2021.1918153

Jahangir, M.A., C. Anand, A. Muheem, S.J. Gilani, M. Taleuzzaman, A. Zafar, M. Jafar, S. Verma & M. Barkat (2020). Nano phytomedicine based delivery system for CNS disease. Current Drug Metabolism, 21: 661-673. https://doi.org/10.2174/1389200221666200523161003.

Karataş, A., & F. Turhan (2015). Phyto-phospholipid complexes as drug delivery system for herbal extracts/ molecules. Turkish Journal of Pharmaceutical Sciences, 12: 93-102.

Karimi, N., B. Ghanbarzadeh, H. Hamishehkar, F. Keyvani, A. Pezeshki & M.M. Gholian (2015). Phytosome and liposome: the beneficial encapsulation systems in drug delivery and food application. 

Karole, S., & G. Gupta (2019). Preparation and evaluation of phytosomes containing ethanolic extract of leaves of Bombax ceiba for hepatoprotective activity. Evaluation, 6: 1-5.

Kattyar, S.L., P.S. Patil, S.V. Patil & S.S. Kadam (2022). Phytosomes and recent research on phytosomal drugs. Asian Journal of Pharmaceutical Analysis, 12: 61-69. http://dx.doi.org/10.52711/2231-5675.2022.00012.

Kazemi, D., S.N. Ebrahimi & R.M. Kouchaksaraee (2022). Fabrication and optimization of physicochemical properties of nano-phytosome from Punica granatum L. peel enriched polyphenol extract. Journal of Medicinal Plants, 21: 50-61. https://jmp.ir/article-1-3385-fa.pdf.

Khan, J., A. Alexander, S. Saraf & S. Saraf (2013). Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. Journal of Controlled Release, 168: 50-60. https://doi.org/10.1016/j.jconrel.2013.02.025.

Kidd, P.M. (2009). Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts. Altern Med Rev, 14: 226-246.

Kim, S.-M., J.-I. Jung, C. Chai & J.-Y. Imm (2019). Characteristics and glucose uptake promoting effect of chrysin-loaded phytosomes prepared with different phospholipid matrices. Nutrients, 11: 2549. 

Komeil, I.A., O.Y. Abdallah & W.M. El-Refaie (2022). Surface modified genistein phytosome for breast cancer treatment: In-vitro appraisal, pharmacokinetics, and in-vivo antitumor efficacy. European Journal of Pharmaceutical Sciences, 179: 106297. https://doi.org/10.1016/j.ejps.2022.106297.

Kumar, M., M. Ahuja & S.K. Sharma (2008). Hepatoprotective study of curcumin-soya lecithin complex. Scientia Pharmaceutica, 76: 761-774. https://doi.org/10.3797/scipharm.0808-09.

Kumar, N., R. Goel, M. Singh, N.K. Sharma, P.K. Gaur & P.K. Sharma (2023). Development and evaluation of Hedyotis corymbosa (L.) extract containing Phytosomes: A preclinical approach for treatment of neuropathic pain in Rodent model. Journal of Microencapsulation, Pages 1-16. 

Li, J., X. Wang, T. Zhang, C. Wang, Z. Huang, X. Luo & Y. Deng (2015). A review on phospholipids and their main applications in drug delivery systems. Asian Journal of Pharmaceutical Sciences, 10: 81-98. https://doi.org/ 10.1016/j.ajps.2014.09.004.

Li, Y., D.-J. Yang, S.-L. Chen, S.-B. Chen & A.S.-C. Chan (2008). Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation. International Journal of Pharmaceutics, 359: 35-45. https://doi.org/10.1016/j.ijpharm.2008.03.022.

Lu, M., Q. Qiu, X. Luo, X. Liu, J. Sun, C. Wang, X. Lin, Y. Deng & Y. Song (2019). Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian Journal of Pharmaceutical Sciences, 14: 265-274. https://doi.org/10.1016/j.ajps.2018.05.011.

Maiti, K., K. Mukherjee, V. Murugan, B.P. Saha & P.K. Mukherjee (2010). Enhancing bioavailability and hepatoprotective activity of andrographolide from Andrographis paniculata, a well‐known medicinal food, through its herbosome. Journal of the Science of Food and Agriculture, 90: 43-51. 

Mancini, S., L. Nardo, M. Gregori, I. Ribeiro, F. Mantegazza, C. Delerue-Matos, M. Masserini & C. Grosso (2018). Functionalized liposomes and phytosomes loading Annona muricata L. aqueous extract: Potential nanoshuttles for brain-delivery of phenolic compounds. Phytomedicine, 42: 233-244. 

Mao, J.T., B. Xue, S. Fan, P. Neis, C. Qualls, L. Massie & O. Fiehn (2021). Leucoselect phytosome modulates serum eicosapentaenoic acid, docosahexaenoic acid, and prostaglandin E3 in a phase i lung cancer chemoprevention study effects of grape seed extract on complex lipid metabolomics. Cancer Prevention Research, 14: 619-626. https://doi.org/10.1158/1940-6207.CAPR-20-0585.

Maryana, W., H. Rachmawati & D. Mudhakir (2016). Formation of phytosome containing silymarin using thin layer-hydration technique aimed for oral delivery. Materials Today: Proceedings, 3: 855-866. 

Mazumder, A., A. Dwivedi, J.L. Du Preez & J. Du Plessis (2016). In vitro wound healing and cytotoxic effects of sinigrin–phytosome complex. International Journal of Pharmaceutics, 498: 283-293. https://doi.org/10.1016/j. ijpharm.2015.12.027.

Metkari, V., R. Shah, N. Salunkhe & S. Gurav (2023). QBD approach for the design, optimization, development, and characterization of Naringenin-loaded phytosomes to enhance solubility and oral bioavailability. Journal of Pharmaceutical Innovation, Pages 1-15. 

Mirzaei, H., A. Shakeri, B. Rashidi, A. Jalili, Z. Banikazemi & A. Sahebkar (2017). Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomedicine & Pharmacotherapy, 85: 102-112. https://doi.org/10.1016/j.biopha.2016.11.098.

Mishra, Y., H.I.M. Amin, V. Mishra, M. Vyas, P.K. Prabhakar, M. Gupta, R. Kanday, K. Sudhakar, S. Saini & A. Hromić-Jahjefendić (2022). Application of nanotechnology to herbal antioxidants as improved phytomedicine: An expanding horizon. Biomedicine & Pharmacotherapy, 153: 113413. 

Murugesan, M.P., M.V. Ratnam, Y. Mengitsu & K. Kandasamy (2021). Evaluation of anti-cancer activity of phytosomes formulated from Aloe vera extract. Materials Today: Proceedings, 42: 631-636. https://doi.org/10. 1016/j.matpr.2020.11.047.

Nagar, G. (2019). Phytosomes: a novel drug delivery for herbal extracts. Int J Pharm Sci Res., Pages 949-959. 

Naik, A.A., C.H. Gadgoli & A.B. Naik (2023). Formulation containing phytosomes of carotenoids from Nyctanthes arbor-tristis and Tagetes patula protect D-galactose Induced skin aging in mice. Clinical Complementary Medicine and Pharmacology, 3: 100070. https://doi.org/10.1016/j.ccmp.2022.100070.

Naik, G.G., M.B. Alam, V. Pandey, P.K. Dubey, A.S. Parmar & A.N. Sahu (2020). Pink fluorescent carbon dots derived from the phytomedicine for breast cancer cell imaging. ChemistrySelect, 5: 6954-6960. https://doi.org/ 10.1002/slct.202001613.

Nashaat, D., M. Elsabahy, K.M. Hassanein, G.A. El-Gindy & E.H. Ibrahim (2023). Development and in vivo evaluation of therapeutic phytosomes for alleviation of rheumatoid arthritis. International Journal of Pharmaceutics, 644: 123332. https://doi.org/10.1016/j.ijpharm.2023.123332.

Nazari, M., H. Majdi, M. Milani, S. Abbaspour-Ravasjani, H. Hamishehkar & L.-T. Lim (2019). Cinnamon nanophytosomes embedded electrospun nanofiber: Its effects on microbial quality and shelf-life of shrimp as a novel packaging. Food Packaging and Shelf Life, 21: 100349. https://doi.org/10.1016/j.fpsl.2019.100349.

Pasala, P.K., R.K. Uppara, et al. (2022). Silybin phytosome attenuates cerebral ischemia‐reperfusion injury in rats by suppressing oxidative stress and reducing inflammatory response: In vivo and in silico approaches. Journal of Biochemical and Molecular Toxicology, 36: e23073. https://doi.org/10.1002/jbt.23073.

Patel, J., R. Patel, K. Khambholja & N. Patel (2009). An overview of phytosomes as an advanced herbal drug delivery system. Asian J Pharm Sci, 4: 363-371.

Pathan, R.A., & U. Bhandari (2011). Preparation & characterization of embelin–phospholipid complex as effective drug delivery tool. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 69: 139-147. 

Permana, A.D., R.N. Utami, A.J. Courtenay, M.A. Manggau, R.F. Donnelly & L. Rahman (2020). Phytosomal nanocarriers as platforms for improved delivery of natural antioxidant and photoprotective compounds in propolis: An approach for enhanced both dissolution behaviour in biorelevant media and skin retention profiles. Journal of Photochemistry and Photobiology B: Biology, 205: 111846. 

Priani, S.E., S. Aprilia, R. Aryani & L. Purwanti (2019). Antioxidant and tyrosinase inhibitory activity of face serum containing cocoa pod husk phytosome (Theobroma cacao L.). Journal of Applied Pharmaceutical Science, 9: 110-115. http://dx.doi.org/10.7324/JAPS.2019.91015.

Rahman, H.S., H.H. Othman, N.I. Hammadi, S.K. Yeap, K.M. Amin, N. Abdul Samad & N.B. Alitheen (2020). Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. International Journal of Nanomedicine, Pages 2439-2483. https://doi.org/10.2147/IJN.S227805.

Rahman, S.H. (2021). Formulation and evaluation of Cassia auriculata flower extract-loaded phytosomal cream to enhance the topical bioavailability. International Journal of Green Pharmacy (IJGP), Page 15.

Rajamma, S.S., V. Krishnaswami, S.L. Prabu & R. Kandasamy (2022). Geophila repens phytosome-loaded intranasal gel with improved nasal permeation for the effective treatment of Alzheimer's disease. Journal of Drug Delivery Science and Technology, 69: 103087. https://doi.org/10.1016/j.jddst.2021.103087.

Sari, R.K., Y.H. Prayogo, R.A.L. Sari, N. Asidah, M. Rafi, I. Wientarsih & W. Darmawan (2021). Intsia bijuga Heartwood Extract and Its Phytosome as Tyrosinase Inhibitor, Antioxidant, and Sun Protector. Forests, 12: 1792. https://doi.org/10.3390/f12121792.

Sbrini, G., P. Brivio, M. Fumagalli, F. Giavarini, D. Caruso, G. Racagni, M. Dell’Agli, E. Sangiovanni & F. Calabres (2020). Centella asiatica L. Phytosome improves cognitive performance by promoting BDNF expression in rat prefrontal cortex. Nutrients, 12: 355. https://doi.org/10.3390/nu12020355.

Semalty, A. (2014). Cyclodextrin and phospholipid complexation in solubility and dissolution enhancement: a critical and meta-analysis. Expert Opinion on Drug Delivery, 11: 1255-1272. 

Semalty, A., M. Semalty, D. Singh & M. Rawat (2010). Preparation and characterization of phospholipid complexes of naringenin for effective drug delivery. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 67: 253-260. 

Semalty, A., M. Semalty, D. Singh & M. Rawat (2012). Phyto-phospholipid complex of catechin in value added herbal drug delivery. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 73: 377-386. 

Sharma, N., S. Singh, N. Laller & S. Arora (2020). Application of central composite design for statistical optimization of Trigonella foenum-graecum phytosome-based cream. Research Journal of Pharmacy and Technology, 13: 1627-1632.

Sharma, S., & A.N. Sahu (2016). Development, characterization, and evaluation of hepatoprotective effect of Abutilon indicum and Piper longum phytosomes. Pharmacognosy Research, 8: 29. 

Shende, M.A., M.S. More & R.P. Marathe (2018). Development and evaluation of Terminalia Arjuna loaded phytosome for bioavailability enhancement. International Journal of Pharmaceutical Sciences and Nanotechnology, 11: 4012-4020. https://doi.org/10.37285/ijpsn.2018.11.2.2.

Shirsath, N.R., & A.K. Goswami (2019). Nanocarriers based novel drug delivery as effective drug delivery: A review. Current Nanomaterials, 4: 71-83. https://doi.org/10.2174/2405461504666190527101436.

Shriram, R.G., A. Moin, H.F. Alotaibi, E.-S. Khafagy, A. Al Saqr, A.S. Abu Lila & R.N. Charyulu (2022). Phytosomes as a plausible nano-delivery system for enhanced oral bioavailability and improved hepatoprotective activity of silymarin. Pharmaceuticals, 15: 790. https://doi.org/10.3390/ph15070790.

Singh, A., A. Ray, R. Mishra, P.K. Biswal, R. Yadav & S.K. Ghatuary (2020). Phyto-Phospholipid complexes: Innovative approach to enhance the bioavailability and therapeutic efficacy of herbal extract. Pharmaceutical and Biosciences Journal, Pages 01-09. https://doi.org/10.20510/ukjpb/8/i4/1593521611.

Singh, A.N., B. Mahanti & K. Bera (2021). Novel drug delivery system & it’s future: an overview. International Journal of Pharmacy and Engineering, 9: 1070-1088. 

Singh, R., S. Parpani, R. Narke & R. Chavan (2014). Phytosome: Recent advance research for novel drug delivery system. Asian Journal of Pharmaceutical Research and Development, Pages 15-29.

Sivadasan, D., M.H. Sultan, S.S. Alqahtani & S. Javed (2023). Cubosomes in drug delivery—A comprehensive review on its structural components, preparation techniques and therapeutic applications. Biomedicines, 11: 1114. https://doi.org/10.3390/biomedicines11041114.

Supraja, B., & S. Mulangi (2019). An updated review on pharmacosomes, a vesicular drug delivery system. Journal of Drug Delivery and Therapeutics, 9: 393-402. https://doi.org/10.22270/jddt.v9i1-s.2234.

Surini, S., H. Mubarak & D. Ramadon (2018). Cosmetic serum containing grape (Vitis vinifera L.) seed extract phytosome: Formulation and in vitro penetration study. Journal of Young Pharmacists, 10: S51.

Tan, Q., S. Liu, X. Chen, M. Wu, H. Wang, H. Yin, D. He, H. Xiong & J. Zhang (2012). Design and evaluation of a novel evodiamine-phospholipid complex for improved oral bioavailability. Aaps Pharmscitech, 13: 534-547. 

Telange, D.R., A.T. Patil, A.M. Pethe, H. Fegade, S. Anand & V.S. Dave (2017). Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. European Journal of Pharmaceutical Sciences, 108: 36-49. 

Telange, D.R., A.T. Patil, A.M. Pethe, A.A. Tatode, S. Anand & V.S. Dave (2016). Kaempferol-phospholipid complex: formulation, and evaluation of improved solubility, in vivo bioavailability, and antioxidant potential of kaempferol. Journal of Excipients and Food Chemicals, 7: 1174. 

Tran, N., B. Pham & L. Le (2020). Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology, 9: 252. https://doi.org/10.3390/biology9090252.

Tripathy, S., D.K. Patel, L. Barob & S.K. Naira (2013). A review on phytosomes, their characterization, advancement & potential for transdermal application. Journal of Drug Delivery and Therapeutics, 3: 147-152. https://doi.org/10.22270/jddt.v3i3.508.

Vu, H.T., S.M. Hook, S.D. Siqueira, A. Müllertz, T. Rades & A. Mc Dowell (2018). Are phytosomes a superior nanodelivery system for the antioxidant rutin? International Journal of Pharmaceutics, 548: 82-91.

Wanjiru, J., J. Gathirwa, E. Sauli & H.S. Swai (2022). Formulation, optimization, and evaluation of moringa oleifera leaf polyphenol-loaded phytosome delivery system against breast cancer cell lines. Molecules, 27: 4430. https://doi.org/10.3390/molecules27144430.

Xu, K., B. Liu, Y. Ma, J. Du, G. Li, H. Gao, Y. Zhang & Z. Ning (2009). Physicochemical properties and antioxidant activities of luteolin-phospholipid complex. Molecules, 14: 3486-3493. 

Xu, L., D. Xu, Z. Li, Y. Gao & H. Chen (2019). Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells. Beilstein Journal of Nanotechnology, 10: 1933-1942. https://doi.org/10.3762/bxiv.2019.61.v1.

Yu, F., Y. Li, Q. Chen, Y. He, H. Wang, L. Yang, S. Guo, Z. Meng, J. Cui & M. Xue (2016). Monodisperse microparticles loaded with the self-assembled berberine-phospholipid complex-based phytosomes for improving oral bioavailability and enhancing hypoglycemic efficiency. European Journal of Pharmaceutics and Biopharmaceutics, 103: 136-148. https://doi.org/10.1016/j.ejpb.2016.03.019.

Yu, Z., X. Liu, H. Chen & L. Zhu (2020). Naringenin-loaded dipalmitoylphosphatidylcholine phytosome dry powders for inhaled treatment of acute lung injury. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 33: 194-204. https://doi.org/10.1089/jamp.2019.1569.

Yue, P.-F., W.-J. Zhang, H.-L. Yuan, M. Yang, W.-F. Zhu, P.-L. Cai & X.-H. Xiao (2008). Process optimization, characterization and pharmacokinetic evaluation in rats of ursodeoxycholic acid–phospholipid complex. AAPS Pharm Sci Tech, 9: 322-329. 

Zhang, K., M. Zhang, Z. Liu, Y. Zhang, L. Gu, G. Hu, X. Chen & J. Jia (2016). Development of quercetin- phospholipid complex to improve the bioavailability and protection effects against carbon tetrachloride-induced hepatotoxicity in SD rats. Fitoterapia, 113: 102-109. https://doi.org/10.1016/j.fitote.2016.07.008.

Zhu, S., C. Luo, W. Feng, Y. Li, M. Zhu, S. Sun & X. Zhang (2020). Selenium-deposited tripterine phytosomes ameliorate the antiarthritic efficacy of the phytomedicine via a synergistic sensitization. International Journal of Pharmaceutics, 578: 119104. https://doi.org/10.1016/j.ijpharm.2020.119104.

Source of Funding:

This study did not receive any grant from funding agencies in the public or not-for-profit sectors.

Competing Interests Statement:

The author has declared no competing interests.

Consent for Publication:

The author declares that she consented to the publication of this study.

Ethical Approval:

Not applicable.

Author’s Contribution:

Author’s independent contribution.